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Transverse vertices in electrodynamics and the gauge 
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R Delbourgo and R Zhang 
Department of Physics, University of Tasmania, Hobart, Australia 7001 

Received 18 April 1984 

Abstract. The inclusion of transverse vertex corrections in the gauge technique, needed 
for the restoration of gauge covariance, results in a self-consistent equation for the source 
propagator spectral function which agrees with perturbation theory when expanded to 
order e4. We have managed to solve the equation in the infrared and ultraviolet limits, 
for scalar and spinor sources, in an arbitrary covariant gauge. The gauge covariance at 
asymptopia is thus established. 

1. Introduction 

As a non-perturbative approach to gauge theories the gauge technique (Delbourgo 
and Salam 1964, Strathdee 1964) transcends the original Baker-Johnson-Willey ( 1964) 
scheme. The notable successes of the technique (Delbourgo 1979) have largely stemmed 
from first gauge approximation (Delbourgo and West 1977a, b) whereby transverse 
corrections to the Green functions are neglected. While this may be fine at low- and 
high-energy limits, it is not at intermediate energies (Slim 1981, Delbourgo et a1 1981) 
and it becomes desirable to improve the results by going to the next gauge approximation 
taking account of the transverse amplitudes in the vertex (and thus incorporating the 
charge and magnetic form factors etc). Apart from restoring gauge covariance at all 
momenta, the need for transverse vertices is most pressing in two- and three-dimensional 
theories (Gardner 1981, Roo and Stam 1984) where the vector particle acquires a mass 
(Deser et a1 1982). In fact, in the two-dimensional case the exact form of the transverse 
vertex can be deduced from the axial gauge identities (Delbourgo and Thompson 1982). 

For four-dimensional electrodynamics there have been two notable attempts at 
incorporating transverse vertices into the technique. King (1983), by looking at leading 
logarithmic terms in perturbation theory, introduced an approximate transverse vertex 
in QED which was asymptotically gauge covariant and which exactly renormalised the 
Dyson-Schwinger equation. However, the attempt was deficient in respect of the 
low-energy properties: the transverse vertex did not agree even with e* perturbation 
theory and had incorrect gauge dependence. Parker (1984) largely rectified these faults 
in the way he introduced transverse corrections, though only for scalar electrodynamics 
and only in the Fermi gauge. The purpose of this paper is to extend Parker’s work to 
the spinor case and to allow for all possible gauge parameters. In the end we shall 
obtain a self-consistent equation for the propagator incorporating the transverse vertex 
which, when expanded to order e4 agrees exactly with perturbation theory. 

The outline of the gauge technique in the next gauge approximation appears in § 2 
and is applied in § 3, where we derive the self-consistent equation of the spinor spectral 
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function. This equation is very complicated but becomes amenable in the infrared and 
ultraviolet limits, yielding the leading behaviours: 

- l+(a-3)e2/8rr2 
S ( P )  - (YP - m )  

Finally, we extend Parker’s scalar electrodynamics work to arbitrary gauges in § 4. 
The purpose of appendix 1 is to substantiate the vanishing of the transverse Green 
function in the soft-photon limit (i.e. proving the absence of a soft-photon singularity 
even when electrons are off-shell); while appendix 2 contains a few details about the 
determination of the discontinuity in the fermion self-energy to order e4, the kernel 
of our equation for the spectral function. 

2. The technique to order e4 

There are three major steps in applying the technique to gauge theories: 
(a) Setting up the Dyson-Schwinger (DS) equations for the Green function of 

interest for the gauge model in question. 
(b) Solving the gauge identities (up to transverse corrections be it understood) that 

involve the Green function; in this connection spectral representations can often 
facilitate solution. 

(c) Truncating the DS equation to a particular order in e so as to obtain a self- 
consistent equation for the amplitude in terms of which the (longitudinal) higher 
amplitudes are expressed. 
Until recently, researchers had contented themselves with studying the two-point 
function and, in essence, were applying the gauge technique in its most primitive form. 
Thus they were led to a self-consistent, but non-perturbative, solution of the propagator 
which was only exact to order e2 and which sacrificed gauge covariance (Slim 1981, 
Delbourgo et a1 1981) except at the asymptopia. 

In this paper we wish to include some degree of transversality into the amplitudes 
by extending Parker’s (1984) recent work on scalar electrodynamics to the more realistic 
spinor case, QED. We shall ascend to the next level of the technique by studying the 
three-point vertex (the two-point function follows from it) and constructing an ansatz 
for it which is exact to order e 3  and which provides a non-perturbative solution for 
the fermion propagator that is exact? to order e4. These improvements mean that we 
are incorporating magnetic effects in the technique for the first time and, by the very 
inclusion of the transverse vertices, can look forward to an amelioration of the gauge 
covariance properties at intermediate momentum values. 

This is how the three basic tools are wielded in practice: 
(a) Including sources, the QED action is 

S = 

in a class of covarient gauges parametrised by (a). (All fields and constants in (1) are 

d4x[-~FJ3” + $( y(i8 - eA) - m ) $  - ( ~ 3 A ) ~ / 2 a  -;$ - $j -JpA, ]  (1) l 
t Apart from internal vacuum polarisation corrections which do not affect the issue of gauge covariance 
and can be separately accounted for. 
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an+= W 

as yet unrenormalised.) The generating functional of connected Green functions 

W ( j ,  J )  = - i  In (dA d$ dG) exp(iS) J 
satisfies the basic fermionic (DS) equation 

for vanishing sources, one arrives at the successive DS equations: 

S ( p ) ( y p  - m,) = 2 - I  +ie2 

G, ( P', P ; P' - P 'YP - mol 

a4k D""(k)G,(p, p - k ;  k ) x  J 
5 = S( p ' )  yc - ie2 d4k D K A  ( k ) G , , ( p ' ,  p - k ;  p' - p ,  k )  x 

Gpu(P',P; % P ' - P  - 4 X Y P  - mo) 

= - G, ( p ' ,  P' - 4 ; 4 )  yY - G V ( p ' ,  P + ; P' -P - 4 )  

-ie2 a4kDKA(k)G, , , (p ' ,  p - k ;  q, p ' - p  - q, k ) y ,  J" 

(4) 

which are now renormalised. One may, of course, derive similar equations from the 
adjoint of (2) in which the differential operator ( y p ' -  mo) acts on the left. For instance: 

( 'YP'-~o)G,(P ' ,P;P ' -P)  

= y,S( p )  - ie2 d4k DAK(  k ) y A G p K ( p '  + k, p ; p '  - p ,  k ) .  (5a) i 
Before moving to the next phase, it is worth observing that the gauge identities (arising 
by contractions with k )  relate one equation to the next; in effect the lower point DS 

equations are subsumed in the higher point equations. For example, contracting (5) 
with k p  yields (4). 

(b) The next step is to exploit the gauge identities so as to gain some information 
about the longitudinal parts of Green functions on the RHS of (4), ( 5 )  and (6). The 



3596 R Delbourgo and R Zhang 

first few identities read: 

( p ' - ~ ) ~ G ~ ( p ' , p ; p ' - p )  = S ( P ) - S ( P ' )  (7) 

k * G , , ( p ' ,  p ;  k, k ' )  = G , ( p ' ,  p + k ;  k ' )  - G , ( p ' -  k, p ;  k ' )  (8) 

kAG, , , , (p ' ,p ;  k, k' ,  k " ) =  G , , ( p ' , p + k ;  k', k " ) - G , , ( p ' - k , p ;  k', k")  ( 9 )  

and in the limit as the photon momentum vanishes they lead to the differential forms 
of the identities: 

GA(P, P ;  0 )  = - ~ S ( P ) / ~ P *  etc. 

From these relations one may abstract the longitudinal parts of the n-point G (those 
that survive contraction with k )  in terms of the full ( n  - 1)-point G. The transverse 
parts GT remain undetermined of course, but if we insist that the longitudinal G L  are 
non-singula'r and obey the differential identities then we can safely disregard the G' 
in the infrared domain?. Actually one can reconstruct a good measure of the amplitudes 
in terms of the propagator S by using the exact spectral representation 

S ( p ) = I  d W ) d W l ( W -  W) (10) 

and making the ansatze 

GZ, . ,"( p ' ,  p ; k ,  . . . kn = P (  W) d WGO,, . . Fn( P', P ; k ,  . . . kn I W) (11) I 
where Go( 1 W) is the Born amplitude for a fermion of mass W Not only are all gauge 
identities automatically respected and the infrared properties exact, but the lowest- 
order perturbation results are naturally incorporated. Put another way, the longitudinal 
amplitudes ( 1  l ) ,  including coupling factors, are exact to order e n  and do not affect 
the analytic properties anticipated from Feynman diagrammatics. We could sharpen 
the G ansatze if general spectral representations were available for all momenta 
off -shell, allowing solution of the identities at higher levels. Unfortunately, even for 
the three-point function, a totally general and usable representation does not exist; 
however, we are fortunately able to overcome this problem below. 

(c) A closed form equation for the amplitudes is attained if one truncates the DS 

equations at some level. Heretofore almost all research has been directed at ,the 
primitive equation (4) in the first gauge approximation G, + GZ[S], D,"( k )  + Db;Zre( k ) .  
Although the resulting non-perturbative solutions are endowed with many attractive 
features (correct analyticity, asymptotics, exact infrared behaviour), they are also 
deficient in many respects, primarily through the neglect of GT in (4). This is what 
we shall try to remedy here. 

The idea is to move up to the next level equations ( 5 )  and (8) where the full 
three-point vertex is determined by the four-point amplitude. In principle (8) gives 
the longitudinal G,, in terms of the complete G, which can then be substituted into 
(5)-the second gauge approximation-so as to yield a self-consistent vertex equation$ 

f And quite often in the ultraviolet too as we shall see: at least the GT do not spoil the asymptotic gauge 
covariance of the amplitudes. 
$ These steps can probably be carried out, complicated though they certainly are. The subsequent task of 
solving for G, is even more difficult, if not intractable. Since we already know that O ( e 6 )  corrections to S 
must come in through GZ,, which modify the resulting G,, it makes as much sense to follow the simpler 
approach advocated below with no sacrifice in the degree of accuracy. 



Transverse vertices in electrodynamics 3 597 

from which S can be extracted. Since transverse corrections of order e4 are neglected 
by dropping. G:“ it follows that the resulting r can only be precisely correct to order 
e4. In practice then, to the same order of accuracy, it is sufficient to adopt the ansatz 
( 1 1 )  

Gbv= d W P ( W ) ( Y P ‘ -  W ) - ’ { Y J Y ( P + k ) -  w ] - ’ y ,  

+ Y,[Y(P + k ‘ )  - w 1 - ’ Y y H Y P  - w1-l (12) 

I 
before substituting in (8). The resulting non-perturbative p (or propagator S) will 
then be correct to fourth order; and gauge covariance will be restored to the same 
order with (one may hope) a corresponding improvement in the momentum at non- 
asymptotic values. 

This is the general strategy, which is executed in the following section. 

3. The self-consistent equation for p 

To arrive a1 
( 5 )  and (8). 
ansatz GbY, 

: the improved spectral equation we must substitute for Gpy in (4) using 
This is practicable (and correct to order e4) when we use the longitudinal 
equation (12), on the right of ( 5 ) .  Take the difference of ( 5 )  and its adjoint 

YP‘G,-G,yP= Y w S ( P ) - S ( P ’ ) Y ,  

-ie2 d4k  D K A ( k ) [ y A G b , (  p ’  + k, p ;  p r  - p ,  k )  I 
- G : K ( p ‘ ? p - k ; p ’ - p ,  k ) y A l  

+ O( e4) terms from GT. 

Next, multiply the LHS by yp’,  the RHS by yp ,  take the difference and use the spectral 
representations for S and GL. This yields the exact expression 

where 
1 1 

y (  p ’  - k )  - W Yr y (  p - k )  - W 
h ; ( p ’ , p l  W ) = i e 2  d 4 k D K A ( k ) y K  I 
are the order e’ perturbative results for the vertex and self-energy of a mass W electron. 
The second gauge approximation consists in dropping the finite O(e4) correction on 
the RHS of (13). It is important to realise that, even so, (13) does include transversal 
corrections to G, ; indeed if we identify 
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as the longitudinal part, obeying identity (7 ) ,  it is possible to prove that the remainder 
GT in the second gauge approximation (13) is non-singular? as the photon momentum 
vanishes. More particularly: 

(Appendix 1 
incorporates 
8 ( W - m ) .  

One may 

whereupon 

lim G:( p ’ ,  p )  = 0. 

gives an explicit demonstration.) Furthermore, the approximated vertex 
full second-order perturbation theory via the direct substitution p (  W )  = 

P’P’ 

tidy up the appearance of (13) by using the dispersion representation 

Im Z( W’I W )  d W’ 
Z ( p l  W )  = -- 

T I yp-W’ 

+ o ( ~ ~ ) .  
1 

X- 
Y P -  w 

The spectral function equation comes by inserting (13) into (4) 

P( W ) (  W -  m0) 

1 
X 

y ( p - k ) -  W Y A  

+ G f Y  contributions of O( e 6 )  (17) 

and may be linearised by leaving the photon undressed. 

D K A  ( k )  + ( - vKA + ( 1 - a )  k K k ” /  k 2 ) /  k2,  

which implies that the (logarithmic, ultraviolet) effects of vacuum polarisation on 
electron propagation are being neglected. That being so, p satisfies the standard 
equation (Delbourgo and West 1977a): 

I dWp(  W)E w- mo+Z(pl W)l/(YP- W )  = o  
(17a) 

+terms of order e6 

t In this respect we disagree with King (1983) who includes just the last two terms of (13) as part of his 
longitudinal vertex and then must impose GT( p ,  p ;  0) = 0 through some ‘regularisation’. In our case the 
vanishing of the transverse vertex is automatic. 
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dW‘ 
Z4(plW)= -ie2 A’,(p,p-klW)+ - 5 y p -  W‘ y K  

is associated with a purely transverse vertex. Taking the discontinuity of (17a) it 
follows that 

E (  W)p( W)[ W-m,+Z( W( W)]= +O(e6).  w- W’ 

The evaluation of Z2 and Z4 is so involved that we have relegated it to appendix 2 
and have only outlined the essential details at that. Here we shall require formulae 
(A2.1), (A2.2), (A2 .7 ) ,  (A2.8)-(A2.11). Since M O =  Re Z(m,  m ) ,  this still leaves a 
wavefunction renormalisation infinity on the LHS of (19) of order e4 which we anticipate 
should cancel against an infinity of the same order on the right since p is renormalised. 
The cancellation happens in any perturbative expansion for the p and it happens for 
us as well (because we incorporate perturbation theory exactly up to order e4, barring 
internal vacuum polarisation). Thus? 

I ~ c ~ ( w ~ ~ ) ~ [ [ I ~ z ~ ( w ~ ~ ) / ( w - ~ ) ] [ z ~ ( w I  ~ ) - ~ ’ ( m l m ) ]  (20) 

ensures that the divergent log A’ match up on each side of (19). Consequently, in the 
second gauge approximation, we finally have the finite renormalised equation: 

m( W)p( W)( W-m)  

Im X,-( WI W )  
w- W’ 

= 1 d W ‘ p (  W’) 

where the logarithmic divergences are absent in Zp Specifically, using the abbreviations 
x = W’/ W, 7 = e2/16rr2, the kernel on the RHS of (21) reads 

Im Zd W( W’)/ 7 ~ w 7  

= (  1 - ~ ’ ) 6 (  1 -x’)[u( 1 + x 2 )  - X ( U  +3)] 

1-47  I n x 2 + T ( 1  + x )  

In x2 +2(  1 -4x +x2)  In 
2( 1 - 4x) 

X [ l +  1 - x 2  

+ ??e( 1 - 9x2)[xY, + Y,] - 7( 1 - x’)e( 1 - x’) -; +24x -fx’ - 2x3 { 
t 12( Wl W) = - (3e2 W/ 16a2)[ln(A2/ W2) + I ]  independently of the gauge parameter a, and our calculations 
indeed confirm that 

ImZ4(pl W )  3 - (3e4/256a2)(p+ W){ap[l+( Wz/p2)] - (a+3)  W}{p[ln(A2/p2)+1]- W[ln(A2/W2)+ I]} 
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+a (  - 3 + x  +2x2 +x3) +[15x3 +a (  I -4x)( 1 +x3)] In xz/(  1 - x’) 

+2[( 1 -a ) (  - I +4x-x2-x3  +4x4-x’) +( -6x +8x2) 

In (22) we recall that f is the dilogarithmic function (see (A2.10)) and that (Zl, ZJ 
and ( Y, ,  Yz)  correspond to electron-two photon and two electron-positron cut contri- 
butions, respectively, expressed in dimensionless variables, integral representations for 
which are stated in appendix 2. 

Equation (21) is obviously extremely difficult to solve. However, some real simplifi- 
cations occur in the infrared limit as we might expect. Let w W/m, then as w + 1, 
the LHS of the equation tends to 

r E ( w ) P ( w ) ( w  - 1 ) ~  +771.  

In that limit f + x * -  1, 2, + 1 -x, Zz+2(1  -x)*,  Y l ,  Yz+O, so the kernel (22) 
‘miraculously’ tends to 

277(1 -x) (a -3) (1  +777). 

As a consequence, a remarkable cancellation of the ( 1  +7e2 /  1 6 ~ ~ )  factor on each side 
leaves us with 

( W  - l ) p ( w ) = 2 7 ( 0  -3) dw’p(w‘), r 
and the standard infrared result: 

(23) p (  w) ( w -  m ) - l + ( a - 3 ) e 2 / 8 ~ 2  

The fact that this behaviour emerges properly is a useful check that our kernel (22) is 
right. 

We may carry out a similar analysis in the ultraviolet domain w >> 1. Here we have 
to be more careful with the asymptotic estimation as typical integrals 

d W’ 
In( W‘/ W) 

W’- w 
must be treated with care. Because 7 is so small one can extract the dominant behaviour 
through the ansatz (Parker 1984) 

(24) p (  W )  = E (  W ) [  W (  W’)’l( 1 + b In W2) + m( W*)$( 1 + c In W’)] 

and find self-consistency in QED with 

k l =  - 1 + U T ,  kz= - 1-37, b = c =  - 3 7  

leading to the expression for S (  p )  quoted in the introduction. It would be misleading 
not to mention that the logarithmic term is undoubtedly influenced by internal vacuum 
polarisation corrections so the coefficient b will correspondingly alter. Moreover, 
higher orders of gauge approximation will bring in further powers of (7 In W 2 )  ; we 
are ignorant about the coefficients of these terms and whether the leading logs can be 
summed. 
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To find the complete analytical solution of (21) is probably impossible but it should 
be feasible to obtain a numerical solution for p (  W )  and hence for S( p )  in any gauge. 
This task remains to be done and will be reported separately. Knowledge of p is vital 
for seeing how the gauge independence of vacuum polarisation is substantiated at least 
to order e4, and thus how reliable are the results on dynamically generated vector 
boson masses (Delbourgo et a1 1982). Also it will provide a non-perturbative approxi- 
mation for the off-shell charge and magnetic form factors when one integrates over W 
in equation (13), which may be testable against known experimental data. 

4. Scalar electrodynamics 

We round off our study by treating the parallel case of scalar electrodynamics. Although 
Parker (1984) did examine the problem in the Fermi gauge ( a  = 1) there remain 
questions associated with gauge dependence that can only be answered by finding the 
results for arbitrary a. We sketch the computations below. 

All equations up to ( l l ) ,  excepting (4)-(6), can be taken over by the straight 
replacements p (  w )  + p (  W’), S( p )  + A( p ) ,  ( y p  - m )  + ( p’ - m’), etc. In place of (4), 
(5) and (12) we have 

A(p)(p2-  m t )  = 2-’ +ie2 d4k DKA(k)G,(p,  p - k;  k)(2p - k), i 
- e 4 1  ; 1 4 k d 4 k ’ 7 7 , A D K ’ ” ( k ’ ) D A v ( p - k - k ’ ) G , , ( p - k - k ’ , p ;  k, k’ )  

+tadpole term. (4s) 

= ( p ’ + p ) , A ( p )  -2ie2 I d4k D F A ( k ) G A ( p  - k, p ;  - k) 

- ie2 

+ e4 j d4k d4k’ D:( k‘)DP“( k)G,,,( p ‘ -  k - k’ ,  p ;  - k, -k’, p ’ - p ) .  (5s)  

d4k(2p’ - k),DKA (k)G,,( p ’  - k, p ;  - k, p ’  - p )  i 

(12s) 
In the second gauge approximation, and exactly to order e4 in (4s), we may use (12s) 
on the RHS of ( 5 s )  and drop GA,,. This gives the analogue of (13), namely, 
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where 

and 

( 14s’) 

are the order e’ vertex and self-energy respectively for a charged scalar meson of mass 
W. The last two terms in (13s) correspond to the transverse vertex correction (which 
again vanishes as p ’ + p ) .  If one substitutes these last equations into (4s)  and takes 
the discontinuity, there results the renormalised equation 

In arriving at (21s) we have cancelled off the e4 divergences: on each side-there is 
a perfect match-to leave us with the finite kernel (here U = W”/ W’). 

Im U,( w’/ w”)/ ~ 7 )  w2e( W’ - w ’ ~ )  
= ( a  - 3 ) (  1 - U ’ ) + ~ Z +  e ( i  - 9 u ) v k -  ~ ( 1  - U )  

2( 1 + 14u + U’) In 
x[75+;43u --- 5+6u 

2(1-U)  

( 1  - 2 u ) ( l +  U )  
1-U 

+ 
1 - U  

where 

I = I”’ d u t (  1 - u t ) {  (4/ U’) ( U ’  - U)[ 1 + a + i( 1 - a)’] 

- (1 /2uf2) (3u’+3 -2a ) (3ut+3u  -2au))  

t The divergent term is 

if the interested reader would like to check it .  
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with 

1 L= [ ( 2 + 2 u  - J ( l +  u2+v2-2u-2u-2uv)  . 2 - 2 u - v  

We have omitted the calculational details: suffice it to say that there are two photon-one 
meson cuts and a three-meson cut (in K ) .  

If we approach the infrared region ( W 2 +  m’ or U + 1).  The kernel simplifies to 

Im IIf( W 2 /  W’2) /  T (  W 2  - W’2)  + 277 ( a  - 3 ) (  1 +377) 

and the equation tends to 

p (  W 2 ) (  W 2  - m’) = 277 ( a  - 3) d W’2 p ( W’2)  c‘ 
producing the standard infrared result 

,,( w2) - ( w Z -  m ? ) - i + ( ~ - 3 ) e 2 / 8 w 2  

Turning to the ultraviolet domain ( W 2 / m 2 +  CO or U + 0), we achieve asymptotic 
self-consistency with 

p ( W 2 ) - ( W 2 ) - i + k r 1 ( 1 + b l n  W 2 )  if k = ( a - 3 )  and b=-377. 

Here, again, the logarithmic term is affected by photon dressing and we cannot even 
hazard a guess about what happens in higher orders of gauge approximation. (The 
same criticism, incidentally, applies to Parker’s results in the ultraviolet limit.) 

We are slightly more hopeful that (21s) will yield itself to a full’solution than the 
corresponding spinor equation ( 2 1 ) .  At all events, armed with known asymptotic 
solutions, we ought to be able to do a full numerical analysis of the spectral equations 
and go from there to determine the induced effects on vacuum polarisation. That work 
lies ahead. 

Appendix 1 

We want to prove that 

YP’YP + YPYP 
E.”( W )  

Y P ’ Y P + Y P Y P  1 3 Y P -  w 
vanishes as p ’ - + p .  Consider the expression in the sqdare brackets and let Sp = p ’ - p  
be small. Then to order (Sp)’  

1 1 [ ] =ie2  I l ‘ k D K * ( k ) [  y K  y p - y k -  W y P y p - y k -  W Y.4 

1 2 P P  + Y S P Y P  
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Define Z( pi W )  = A W + ypB where A and B are invariant scalar functions of p 2  and 
W2. The derivatives of A and B give zero since p p  terms vanish upon contraction: 
also A drops out of the commutator term. Hence 

by y-matrix algebra. This then confirms the finite behaviour of GT and the dominance 
of GL in the infrared, explaining why the gauge technique is so successful in that regime. 

Appendix 2 

The calculation of Z2 in (14')  is so straightforward that we shall just quote the answer: 

e2 
~ 2 ( p l  w)  =s { [ a y p  - ( a  + 3 )  wl 

+ ( - a y p [  1 +5] +[3 + a ]  W )  ( 1 -5) in( 1 - $)} . 

(A2.1) 

In equation (19) we also require the discontinuity of Z4 where 

Z4(p /W)= - ie2  

d W' Im Z2( W'I W )  1 + -  I y p -  W' T (  w -  W' )  Y . ( v (p -k ) -  w - Y ( P - k ) -  W' 

d W' Im Z2( WI W )  i T (  yp - W')(  w - W')  
- - - ie2  1 d4k D"^(k)A;(p,  p - k (  W )  y, + 

x[Z2(pI W)-Z2(Pl W')l 

= I, + zx (A2.3) 
The hard work commences now. 

Decompose I,4 into gauge-independent and gauge-dependent parts? 

z,, = e4 a4k d41 y, ( yp - yk  - W)-'  yp [ y ( p - k - I )  - W]-' yA ( y p  - y l -  w)-' 

x [ - v c A  + ( l  - a ) k K k A / k 2 ] / k 2 l 2  
I 

= z:, + z: (A2.4) 
where 

I: = ie2( 1 - a )  a'k yk (  yp - yk  - W)-'[Zt=o( p - kl W )  -Z:=o( p (  W ) ]  (A2.5) I 
t ( 1  - a ) ! / /  l 2  disappear because Z4 comes from a transverse G,. 
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and 

x ( y p  - y l -  W)-‘y”/  k212. 
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(A2.6) 

From ( A 2 . 5 )  it is not very difficult to arrive at 

but it is much harder to extract the imaginary part of (A2.6). We first disentangle the 
y-algebra by writing 

1’ A -  - e4 a4k d41{4W[(2p - k- l ) ( p  -k- I )  + ( p -  k ) ( p  - 1)  -2m2] 

+ (4/yp)[ W2p(3p -2k -21)  -2P(P - k - O ( P  - k ) ( P  - /?I) 
~ { [ ( p -  k)’- W’][(p- k - I ) ’ -  W ’ ] [ ( P - ~ ) ~ -  W2]k212}-’ 

and then apply the Cutkosky-Nakanishi cutting rules: the imaginary parts then appear 
by letting various combinations of propagators go on-shell: either two photons and 
one electron, one photon and one electron, or two electrons and one positron. After 
much arduous computation one ends up with 

Im 16 = WZ!~)  + yp1;:’ 

1::’ = XI + ( 1 + W2/p2)Z1 + z, + Yl 

z y  = x, +(2  W4/p4)Z, - (1 - W 2 / p 2 ) Z 2  + Y* 

where 
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p 2  + 3 W2  - q2 + A ( I - 4 W2/  q2)  ‘I2 

p 2  +3 W 2  - q2 - A (  1 - 4  W 2 / q 2 ) ‘ / 2  

e4 
(P- WP p 2 q 2  + 5 WZq2 - q 4  - 4 w4 - 2p2 w2 

Y2 = - dq’ In Y 64rr3p4 /4w2 p 2 + 3 w 2 - q z  

’ 

in which 

‘ $ = p 2 / ( p 2 -  W2) 

‘ df 
(Spence’s dilogarithm function), 

p 2 -  q 2 -  W 2 - A  A E [ p 4  + q4 + W4 - 2p2 W 2  - 29’ W 2  - 

(A2.10) 

The cuts in X and Z begin at p 2 =  W2,  those in Y at p 2 = 9  W2. 
Finally we need the imaginary part of Z,. This is extracted from (A2.3)  either 

through the discontinuity in the denominator multiplying Im Z2 X Re Z2 or as a principal 
value integral over Im x2 x Im E’. One eventually arrives at 

e’ 
1 6 ~  

I m I z  = 7 I m Z2 ( p I W )  

In,+- W 2  p 2  ln-) P 2  
p - w  p 2 - w =  w2 

- yp( 7 In - p 2 - w 2  W 2  +- p 2 - w 2  p 2  In<)]} w 
‘A2 

+y- e4 p 2  - w2 ( 4  w - y p  ( P’ ,.”’) ( a In - + 1) 
2 5 6 ~  p 2  W2  

+- In -) P 2  
2 . 5 6 ~ ~  p 2  p 2 -  w2 w2 

+ y p (  9P’;p;w’+ p 2 ( p 2 -  P 4 - 4 W 4  W2) In g)] w2 
2 W 2  In ’1. 

p 2 -  w2 w2 
e4 

64r3 
( a  + 3 )  w -- 
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